Decomposable Bilinear Numerical Radii

Kenneth Moore
Hughes Aircraft Company
Culver City, California

Submitted by Richard A. Brualdi

Abstract

Let A be an n-square normal matrix over \mathbb{C}, and $Q_{m, n}$ be the set of strictly increasing integer sequences of length m chosen from $1, \ldots, n$. For $\alpha, \beta \in Q_{m, n}$ denote by $A[\alpha \mid \beta]$ the submatrix obtained from A by using rows numbered α and columns numbered β. For $k \in\{0,1, \ldots, m\}$ write $|\alpha \cap \beta|=k$ if there exists a rearrangement of $1, \ldots, m$, say $i_{1}, \ldots, i_{k}, i_{k+1}, \ldots, i_{m}$, such that $\alpha\left(i_{j}\right)=\beta\left(i_{j}\right), i=1, \ldots, k$, and $\left\{\alpha\left(i_{k+1}\right), \ldots, \alpha\left(i_{m}\right)\right\} \cap\left\{\beta\left(i_{k+1}\right), \ldots, \beta\left(i_{m}\right)\right\}=\varnothing$. Let $\mathscr{Q l}_{n}$ be the group of n-square unitary matrices. Define the nonnegative number

$$
\rho_{k}(A)-\max _{U \in \mathscr{U}_{n}}\left|\operatorname{det}\left(U^{*} A U\right)[\alpha \mid \beta]\right|,
$$

where $|\alpha \cap \beta|=k$. Theorem 1 establishes a bound for $\rho_{k}(A), 0 \leqslant k<m-1$, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, $n \geqslant 2 m$. Theorem 2 leads to an interlacing inequality which, in the case $n=4, m=2$, resolves in the affirmative the conjecture that

$$
\rho_{m}(A) \geqslant \rho_{m-1}(A) \geqslant \cdots \geqslant \rho_{0}(A) .
$$

I. INTRODUCTION

Let A be an n-square normal matrix over \mathbb{C} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Denote by $Q_{m, n}$ the set of $\binom{n}{m}$ strictly increasing integer sequences of length m chosen from $1, \ldots, n$. For $\alpha, \beta, \gamma \in Q_{m, n}$, let $A[\alpha \mid \beta]$ be the m-square submatrix of A formed by selecting rows numbered α and columns β, and set $\lambda_{\gamma}=\lambda_{\gamma(1)} \cdots \lambda_{\gamma(m)}$. For $k \in\{0,1, \ldots, m\}$, write $|\alpha \cap \beta|=k$ if there exists a rearrangement of $1, \ldots, m$, say $i_{1}, \ldots, i_{k}, i_{k+1}, \ldots, i_{m}$, such that $\alpha\left(i_{j}\right)=\beta\left(i_{j}\right)$,
$j=1, \ldots, k$, and $\left\{\alpha\left(i_{k+1}\right), \ldots, \alpha\left(i_{m}\right)\right\} \cap\left\{\beta\left(i_{k+1}\right), \ldots, \beta\left(i_{m}\right)\right\}=\varnothing$. Thus, if $|\alpha \cap \beta|=k$, the submatrix $A[\alpha \mid \beta]$ intersects the main diagonal of A in k main diagonal places.

Consider the set

$$
\Delta_{\alpha, \beta}^{k}(A)=\left\{\operatorname{det}\left(U^{*} A U\right)[\alpha \mid \beta]: U \in Q_{n}\right\}
$$

where Q_{n} is the group of n-square unitary matrices, and $|\alpha \cap \beta|=k$.
In [6], it is shown that if X is an n-square matrix, $n \geqslant 2 m$ and $|\alpha \cap \beta|=k$, then $\Delta_{\alpha, \beta}^{k}(X)$ is independent of α and β; that is, $\Delta_{\alpha, \beta}^{k}(X)=\Delta^{k}(X)$, where

$$
\Delta^{k}(X)=\left\{\operatorname{det}\left(U^{*} X U\right)[12 \ldots m \mid 12 \ldots k m+1 \ldots 2 m-k]: U \in \mathscr{Q}_{n}\right\} .
$$

Define the nonnegative number

$$
\rho_{k}(A)=\max _{z \in \Delta^{k}(A)}|z|
$$

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis in \mathbb{C}^{n}, the space of complex column n-tuples. Denote by $\otimes^{m} \mathbb{C}^{n}$ the m th tensor space over \mathbb{C}^{n}, and by $\wedge^{m} \mathbb{C}^{n}$ the m th exterior space over \mathbb{C}^{n}. For $\alpha \in Q_{m, n}$, denote by e_{α}^{\wedge} the skew-symmetric tensor $e_{\alpha(1)} \wedge \cdots \wedge e_{\alpha(m)}$. If $Q_{m, n}$ is ordered lexicographically, then $\left\{e_{\alpha}^{\wedge}: \alpha \in\right.$ $\left.Q_{m, n}\right\}$, the standard basis in $\mathbb{C}\binom{n}{m}$, is an ordered orthonormal basis of $\wedge^{m} \mathbb{C}^{n}$. Set $G_{m, n}=\left\{u^{\wedge}=u_{1} \wedge \cdots \wedge u_{m} \in \wedge^{m} \mathbb{C}^{n}:\left\|u^{\wedge}\right\|=1\right\}$, the Grassmannian manifold. By the usual arguments it may be assumed that the vectors u_{1}, \ldots, u_{m} occurring in a unit length exterior product u^{\wedge} are orthonormal.

For any n-square matrix X define the induced matrix $\otimes^{m} X$ by $\otimes^{m} X v_{1}$ $\otimes \ldots \otimes v_{m}=X v_{1} \otimes \ldots \otimes X v_{m}$ for arbitrary $v_{1}, \ldots, v_{m} \in \mathbb{C}^{n}$. Since $\wedge^{m} \mathbb{C}^{n}$ is a reducing subspace of $\otimes^{m} X$ the m th compound of X [1, p. 19] can be defined by $C_{m}(X)=\otimes^{m} X \mid \wedge^{m} \mathbb{C}^{n}$. Using the induced inner product in $\wedge^{m} \mathbb{C}^{n}$, it can be shown that $\left(C_{m}(X) e_{\beta}, e_{\alpha}\right)=\operatorname{det} X[\alpha \mid \beta]$. An important property of the m th compound is that $C_{m}(X Y)=C_{m}(X) C_{m}(Y)$ for arbitrary X and Y. Clearly for any $u_{\alpha}^{\wedge} \in G_{m, n}$ a unitary U can be selected so that $C_{m}(U) u_{\alpha}^{\wedge}=U u_{\alpha(1)}$ $\wedge \cdots \wedge U u_{\alpha(m)}=e_{\alpha}^{\wedge}$. Hence, for any $\alpha, \beta \in Q_{m, n}$ with $|\alpha \cap \beta|=k$,

$$
\Delta^{k}(A)=\left\{\left(C_{m}(A) u_{\hat{\beta}}^{\wedge}, u_{\alpha}^{\wedge}\right): u_{1}, \ldots, u_{n} \in \mathbb{C}^{n} \text { o.n. }\right\}
$$

Let $\lambda_{\max }=\max _{\gamma \in Q_{m, n}}\left|\lambda_{\gamma}\right|, \lambda_{\text {min }}=\min _{\gamma \in Q_{m . n}}\left|\lambda_{\gamma}\right|$. The normality of A implies that the numerical radius [2, p. 114] of $C_{m}(A)$ is $\lambda_{\max }$. Since the
eigenvectors of $C_{m}(A)$ are decomposable, $\rho_{m}(A)=\lambda_{\max }$. Thus $\rho_{k}(A)$ for $0 \leqslant k<m$ are decomposable bilinear numerical radii.

The main result of this paper establishes a bound for $\rho_{k}(A), 0 \leqslant k<m-1$, in terms of a classical variational inequality due to Fermat [4]. Let A be positive semidefinite, $n \geqslant 2 m$. It is conjectured [6] that ${ }^{1}$

$$
\begin{equation*}
\rho_{m}(A) \geqslant \rho_{m-1}(A) \geqslant \cdots \geqslant \rho_{0}(A) \tag{1}
\end{equation*}
$$

The bound obtained here leads to an interlacing inequality which, in the case $n=4$ and $m=2$, resolves the conjecture (1) in the affirmative.

II. STATEMENTS OF RESULTS

Theorem 1. Let $m \geqslant 2, n \geqslant 2 m$; then

$$
\rho_{k}(A) \leqslant \min _{z \vDash \mathbb{C}} \begin{cases}\frac{1}{4} \sum_{\gamma \in Q_{m, n}}\left|\lambda_{\gamma}-z\right| & \text { if } k=m-2 \tag{2}\\ \frac{1}{2(m-k+1)} \sum_{\gamma \in Q_{m, n}}\left|\lambda_{\gamma}-z\right| & \text { if } k<m-2\end{cases}
$$

Theorem 2. Let A be Hermitian positive semidefinite, $\mu, \nu, \omega \in Q_{m, n}$, $\lambda_{\mu}=\lambda_{\max }$, and $\lambda_{\nu}=\lambda_{\text {min }}$. If $m \geqslant 2, n \geqslant 2 m$, then

$$
\rho_{k}(A) \leqslant \begin{cases}\frac{1}{4}\left\{\left(\lambda_{\mu}-\lambda_{\nu}\right)+\max _{\gamma, \omega \neq \mu, \nu}\left(\lambda_{\gamma}-\lambda_{\omega}\right)\right\} & \text { if } k=m-2, \\ \frac{1}{2(m-k+1)}\left\{\left(\lambda_{\mu}-\lambda_{\nu}\right)+\max _{\gamma_{i}, \omega_{i} \neq \mu, \nu} \sum_{i=1}^{m-k}\left(\lambda_{\gamma_{i}}-\lambda_{\omega_{i}}\right)\right\} & \\ \text { if } k<m-2 .\end{cases}
$$

III. PROOFS OF RESULTS

The quadratic (Plücker) relations [3, p. 312] yield the following key lemma obtained in [5].

[^0]Lemma 1. Let $\alpha, \beta, \gamma \in Q_{m, n}(n \geqslant 4),|\alpha \cap \beta|=k$. Then for any n-square unitary matrix U,

$$
|\operatorname{det} U[\gamma \mid \alpha] \operatorname{det} U[\gamma \mid \beta]| \leqslant \begin{cases}\frac{1}{4} & \text { if } k=m-2 \tag{3}\\ \frac{1}{2(m-k+1)} & \text { if } k<m-2\end{cases}
$$

Now A and $U^{*} A U$ share a common set of eigenvalues for any $U \in \mathscr{Q}_{n}$. So to obtain (2) A may be replaced by $U^{*} A U$, where A is diagonal. It follows that $C_{m}(A)$ is diagonal.

Proof of Theorem 1. For any $z \in \mathbb{C}$

$$
\begin{align*}
\left|\operatorname{det}\left(U^{*} A U\right)[\alpha \mid \beta]\right| & =\left|\left(C_{m}\left(U^{*} A U\right) e_{\beta}^{\hat{\beta}}, e_{\alpha}^{\wedge}\right)\right| \\
& =\left|\left(\left\{C_{m}\left(U^{*} A U\right)-z I_{\binom{n}{m}}\right) e_{\beta}^{\wedge}, e_{\alpha}^{\wedge}\right)\right| \quad(\text { since } \alpha \neq \beta) \\
& =\left|\left(C_{m}\left(U^{*}\right)\left\{C_{m}(A)-z I_{\binom{n}{m}}\right) C_{m}(U) e_{\beta}^{\wedge}, e_{\alpha}^{\wedge}\right)\right| \\
& =\left\lvert\, \sum_{\gamma, \omega \in Q_{m, n}} C_{m}\left(U^{*}\right)_{\alpha \gamma}\left\{C_{m}(A)-z I_{\left.\binom{n}{m}\right\}_{\gamma \omega} C_{m}(U)_{\omega \beta} \mid}\right.\right. \\
& =\left|\sum_{\gamma} \frac{\operatorname{det} U[\gamma \mid \alpha]}{}\left\{\lambda_{\gamma}-z\right\} \operatorname{det} U[\gamma \mid \beta]\right| \\
& \leqslant \sum_{\gamma}|\operatorname{det} U[\gamma \mid \alpha] \operatorname{det} U[\gamma \mid \beta]|\left|\lambda_{\gamma}-z\right| \\
& \leqslant \begin{cases}\frac{1}{4} \frac{\sum_{\gamma}\left|\lambda_{\gamma}-z\right|}{\frac{1}{2(m-k+1)}} \sum_{\gamma}\left|\lambda_{\gamma}-z\right| \quad \text { if } \quad k<m-2\end{cases} \tag{4}
\end{align*}
$$

from Lemma 1. The theorem follows immediately upon minimizing (4) over \mathbb{C}.

Remark. If $U \in \mathcal{Q}_{n}$, then $C_{m}(U) \in \mathscr{Q}\binom{n}{m}$. Therefore, the columns of $C_{m}(U)$ are unit vectors. It follows that $\Sigma_{\gamma \in Q_{m, n}}|\operatorname{det} U[\gamma \mid \alpha] \operatorname{det} U[\gamma \mid \beta]| \leqslant 1$.

Take $U \in \mathscr{Q}_{n}, \alpha, \beta, \gamma \in Q_{m, n}$, and $|\alpha \cap \beta|=k<m$. The orthogonality of the columns of $C_{m}(U)$, the Remark, and (3) imply the three following conditions:

$$
\begin{aligned}
& \sum_{\gamma} \overline{\operatorname{det} U[\gamma \mid \alpha]} \operatorname{det} U[\gamma \mid \beta]=0, \\
& \sum_{\gamma}|\operatorname{det} U[\gamma \mid \alpha] \operatorname{det} U[\gamma \mid \beta]| \leqslant 1,
\end{aligned}
$$

and

$$
|\operatorname{det} U[\gamma \mid \alpha] \operatorname{det} U[\gamma \mid \beta]| \leqslant \begin{cases}\frac{1}{4} & \text { if } \quad k=m-2, \\ \frac{1}{2(m-k+1)} & \text { if } \quad k<m-2\end{cases}
$$

Lemma 2. Let $N \geqslant 6, a \geqslant 2, b=2 a<N$ be integers, $l_{1} \geqslant l_{2} \geqslant \cdots \geqslant l_{N} \geqslant 0$ be real numbers, and

$$
\mathscr{Q}=\left\{\left(d_{1}, \ldots, d_{N}\right) \in \mathbb{C}^{N}: \sum_{i=1}^{N} d_{i}=0, \sum_{i=1}^{N}\left|d_{i}\right| \leqslant 1,\left|d_{i}\right| \leqslant \frac{1}{b}\right\}
$$

Then

$$
\max _{d \in \mathscr{Q}}\left|\sum_{i=1}^{N} l_{i} d_{i}\right|=\frac{1}{b}\left\{\left(l_{1}-l_{N}\right)+\cdots+\left(l_{a}-l_{N-a+1}\right)\right\} .
$$

Proof. For any $z=\sum_{i=1}^{N} l_{i} d_{i}$ there is a $\xi,|\xi|=1$, such that $|z|-\xi z=$ $\sum_{i=1}^{N} l_{i} \xi d_{i} \geqslant 0$. Since $\xi\left(d_{1}, \ldots, d_{N}\right) \in \mathscr{D}$, we may assume $\sum_{i=1}^{N} l_{i} d_{i} \geqslant 0$. Moreover, $0 \leqslant \sum_{i=1}^{N} l_{i} d_{i}=\operatorname{Re} \sum_{i=1}^{N} l_{i} d_{i}=\sum_{i=1}^{N} l_{i} \operatorname{Re}\left(d_{i}\right)$ and $\left(\operatorname{Re}\left(d_{1}\right), \ldots, \operatorname{Re}\left(d_{N}\right)\right) \in \operatorname{Q}$. So we assume d_{i} is real, $i=1, \ldots, N$. Suppose $l_{i}=l_{i}$, some $i \neq j$. Select $\varepsilon>0$, and form $\hat{l}_{i}=l_{i}+\varepsilon, \hat{l}_{i}=l_{i}, i \neq j$. Then $\left|\Sigma_{i=1}^{N} \hat{l}_{i} d_{i}-\Sigma_{i=1}^{N} l_{i} d_{i}\right| \leqslant \varepsilon$. Therefore, any maximal sum is arbitrarily close to a sum in which the l_{i} are distinct. So we may assume $l_{1}>l_{2}>\cdots>l_{N}>0$.

Suppose $\sum_{i=1}^{N}\left|d_{i}\right|<1$. Since $b<N$, we can find $i_{1}<i_{2}$ such that $\left|d_{i_{1}}\right|<1 / b$ and $\left|d_{i_{2}}\right|<1 / b$. Then there exist $\varepsilon>0, \hat{d}_{i_{1}}=d_{i_{1}}+\varepsilon, \hat{d}_{i_{2}}=d_{i_{2}}-\varepsilon, \hat{d}_{i}=d_{i}$ for $i \neq i_{1}, i_{2}$ such that $\left(d_{1}, \ldots, \hat{d}_{N}\right) \in \mathscr{Q}$, and $\sum_{i=1}^{N_{1}} l_{i} d_{i}=\sum_{i=1}^{N} l_{i} d_{i}+\left(l_{i_{1}}-i_{i_{2}}\right) \varepsilon>$ $\sum_{i=1}^{N} l_{i} d_{i}$. So we may assume $\sum_{i=1}^{N}\left|d_{i}\right|=1$.

Suppose there is an i_{0} with $\left|d_{i_{0}}\right| \notin\{0,1 / b\}$. Then there are at least two indices i_{1}, i_{2} with $i_{0} \in\left\{i_{1}, i_{2}\right\}, i_{1}<i_{2}$, and

$$
\begin{equation*}
\left|d_{i_{1}}\right|,\left|d_{i_{2}}\right| \notin\left\{0, \frac{1}{b}\right\} . \tag{5}
\end{equation*}
$$

Otherwise, $0=\sum_{i=1}^{N} d_{i}=d_{i_{0}}$. Moreover, $d_{i_{1}}$ and $d_{i_{2}}$ may be chosen so that $d_{i_{1}} \cdot d_{i_{2}}>0$. For if not, then

$$
\begin{equation*}
d_{i_{1}} \cdot d_{i_{2}}<0 \tag{6}
\end{equation*}
$$

and we cannot find $\left|d_{i_{3}}\right|<1 / b$ such that $d_{i_{1}} \cdot d_{i_{3}}>0$ or $d_{i_{2}} \cdot d_{i_{3}}>0$. Thus $\left|d_{i}\right| \in\{0,1 / b\}$ for $i \neq i_{1}, i_{2}$, and $1=\sum_{i \neq i_{1}, i_{2}}^{N}\left|d_{i}\right|+\left|d_{i_{1}}\right|+\left|d_{i_{2}}\right|=(b-1) / b+\left|d_{i_{1}}\right|$ $+\left|d_{i_{2}}\right|$. Since b is even,

$$
\begin{equation*}
0=\sum_{i \neq i_{1}, i_{2}}^{N} d_{i}+d_{i_{1}}+d_{i_{2}}= \pm \frac{1}{b}+d_{i_{1}}+d_{i_{2}} . \tag{7}
\end{equation*}
$$

But (5) and (6) imply
which contradicts (7). Therefore $d_{i_{1}} \cdot d_{i_{2}}>0$, and for any $0<\delta<$ $\min \left\{\left|d_{i_{1}}\right|,\left|d_{i_{2}}\right|,\left|d_{i_{1}}+\delta\right|+\left|d_{i_{2}}-\delta\right|=\left|d_{i_{1}}\right|+\left|d_{i_{2}}\right|\right.$. As above, there exist $\varepsilon>0, \hat{d}_{i_{1}}=d_{i_{1}}+\varepsilon, \hat{d}_{i_{2}}=d_{i_{2}}-\varepsilon, \hat{d}_{i}=d_{i}, i \neq i_{1}, i_{2}$, such that $\left(\hat{d}_{1}, \ldots, \hat{d}_{N}\right) \in \mathscr{D}$, and $\sum_{i=1}^{N_{i}} l_{i} \hat{d}_{i}>\sum_{i=1}^{N} l_{i} d_{i}$. So we assume $\left|d_{i}\right| \in\{0,1 / b\}, i=1, \ldots, N$. Since $\sum_{i=1}^{N} d_{i}=0$, the d_{i} 's must pair off with opposite signs. In other words, there exist $i_{1}, \ldots, i_{a}, i_{1}^{\prime}, \ldots, i_{a}^{\prime}$ such that

$$
\begin{aligned}
\sum_{i=1}^{N} l_{i} d_{i} & =\sum_{i=1}^{a} d_{i_{i}}\left(l_{i_{i}}-l_{i_{i}}\right) \\
& \leqslant \frac{1}{b}\left\{\left(l_{1}-l_{N}\right)+\cdots+\left(l_{a}-l_{N-a+1}\right)\right\}
\end{aligned}
$$

Proof of Theorem 2. Take $N=\binom{n}{m}$. If $k=m-2$, set $a=2$ and $b=2 a$ $=4<6 \leqslant N$. If $0 \leqslant k<m-2$, set $a=m-k+1 \geqslant 4$ and $b=2 a=2(m-k$ +1); since $n \geqslant 2 m$, it follows that $b<N$. Select $\gamma_{i} \in Q_{m, n}$ so that $\lambda_{\gamma_{i}}=l_{i}$, where $l_{1} \geqslant l_{2} \geqslant \cdots \geqslant l_{N} \geqslant 0$, and let $d_{i}(U)=\operatorname{det} U\left[\gamma_{i} \mid \alpha\right] \operatorname{det} U\left[\gamma_{i} \mid \beta\right], i=$ $1, \ldots, N$, where $U \in \mathscr{Q}_{n},|\alpha \cap \beta|=k$. Hence from Lemma 1 and Lemma 2

$$
\begin{aligned}
\rho_{k}(A) & =\max _{U \in Q_{n}}\left|\sum_{i=1}^{N} \lambda_{\gamma_{i}} \overline{\operatorname{det} U\left[\gamma_{i} \mid \alpha\right]} \operatorname{det} U\left[\gamma_{i} \mid \beta\right]\right| \\
& =\max _{U \in थ_{n}}\left|\sum_{i=1}^{N} l_{i} d_{i}(U)\right| \\
& \leqslant \begin{cases}\frac{1}{4}\left\{\left(l_{1}-l_{N}\right)+\left(l_{2}-l_{N-1}\right)\right\}, & k=m-2, \\
\frac{1}{2(m-k+1)}\left\{\left(l_{1}-l_{N}\right)+\cdots+\left(l_{m-k+1}-l_{N-m+k}\right)\right\}, & k<m-2\end{cases}
\end{aligned}
$$

The result follows immediately upon replacing the l_{i} 's with the λ_{γ} 's.

IV. APPLICATIONS

It is shown in [5] that if A is an n-square normal matrix, $m \geqslant 2, n \geqslant 2 m$, then

$$
\rho_{k}(A) \leqslant \begin{cases}\frac{E_{m}\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right)}{4} & \text { if } k=m-2 \tag{8}\\ \frac{E_{m}\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right)}{2(m-k+1)} & \text { if } k<m-2\end{cases}
$$

where $E_{m}\left(t_{1}, \ldots, t_{m}\right)=\Sigma_{\gamma \in Q_{m, n}} \Pi_{i=1}^{m} t_{\gamma(i)}$ is the m th elementary symmetric polynomial. Since $\min _{z \in \mathbf{C}} \Sigma_{\gamma}\left|\lambda_{\gamma}-z\right| \leqslant E_{m}\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right)$, (2) refines (8).

Let A be Hermitian, $k \in\{0,1, \ldots, m-1\}$. From Mirsky [8] it is immediate that $\rho_{k}(A) \leqslant \frac{1}{2}\left(\lambda_{\max }-\lambda_{\min }\right)$. In [6], (1) is conjectured for positive semidefinite A. This conjecture is resolved here in the affirmative for the case $n=4$, $m=2$.

Assume $A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{4}\right), \lambda_{1} \geqslant \cdots \geqslant \lambda_{4} \geqslant 0, \lambda_{i j}=\lambda_{i} \lambda_{j}$ for $1 \leqslant i, j \leqslant 4$. Since the eigenvectors of $C_{2}(A)$ may be chosen from $G_{2,4}$, we have $\rho_{2}(A)=$
$\lambda_{\max }=\lambda_{12}$. Clearly $\lambda_{12} \geqslant \frac{1}{2}\left(\lambda_{12}-\lambda_{34}\right)$, so $\rho_{2}(A) \geqslant \rho_{1}(A)$. If

$$
U_{0}=\frac{1}{\sqrt{2}}\left[\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0
\end{array}\right],
$$

then $\operatorname{det}\left(U_{0}^{*} A U_{0}\right)[12 \mid 13]=\frac{1}{4}\left\{\left(\lambda_{12}-\lambda_{34}\right)+\left(\lambda_{13}-\lambda_{24}\right)\right\} \in \Delta^{1}(A)$. Therefore

$$
\begin{aligned}
\rho_{2}(A) & \geqslant \rho_{1}(A) \geqslant \frac{1}{4}\left\{\left(\lambda_{12}-\lambda_{34}\right)+\left(\lambda_{13}-\lambda_{24}\right)\right\} \\
& \geqslant \rho_{0}(A) \quad \text { from Theorem } 2 .
\end{aligned}
$$

REFERENCES

1 F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1959.
2 P. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, N.J., 1967.
3 W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. 1, Cambridge U. P. London, 1947.
4 H. W. Kuhn, "Steiner's" problem revisited, MAA Studies in Math. 10:52-70 (1974).

5 M. Marcus and I. Filippenko, Inequalities connecting eigenvalues and nonprincipal subdeterminates, in Proceedings of the Second International Conference on General Inequalities at Oberwolfach, Vol. 2, 1980, pp. 91-105.
6 M. Marcus and K. Moore, A subdeterminant inequality for normal matrices, Linear Algebra Appl. 31:129-143 (1980).
7 M. Marcus and H. Robinson, Bilinear functionals on the Grassmannian manifold, Linear and Multilinear Algebra 3:215-225 (1975).
8 L. Mirsky, Inequalities for normal and Hermitian matrices, Duke Math. J. 14:591599 (1957).

[^0]: ${ }^{1}$ Interesting results concerning (1) may be found in [7].

